
Modified from content HERE, HERE, and HERE with thanks to the earlier contributors Cam Macdonell, Tracy
Teal, Greg Wilson, Dennis Tennen, Paul Wilson, Milad Fatenejad, Sasha Wood, and Radhika Khetani.

This is a script of sorts for running the Bash shell portion of a Data Carpentry Workshop with Digital Humanities
researchers. It is based on content from the Software Carpentry shell-novice lessons.

Four things to make clear before heading into this workshop:

1. Silence is golden (or frustrating)
2. Capitalization matters
3. Spaces matter
4. Everything is a file

Yes, these will be brought up throughout the workshop as they arise but there are enough pitfalls for
participants without having these snags waiting for them too.

The shell is a program that presents a command line interface which allows you to control your computer using
commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a
mouse/keyboard combination. The terms “shell” and “command line” are often used interchangeably. When
most people talk about working in a shell or on a command line the operating system that they are using is
usually a flavour of GNU-Linux and will often be assumed to be the case.1

There is more than one shell and each shell can come in different versions. The shell that we will be using
today is the most common. It is known as BASH, which stands for “Bourne Again SHell”.2

There are many reasons to learn about the shell.

For some tools, such as Mallet (a popular topic modeller) you have to use the shell. There is no graphical
interface. If you want to collaborate with people from the sciences this will become even more common.
Most shells were written in the C language to process text context. They are very fast and can give you
the power to do your work more efficiently and more quickly. When you need to do things tens to
thousands of times, knowing how to use the shell is transformative.
Using the shell gives you the ability to have repeatable data processing.
To use remote computers or cloud computing, you need to use the shell.

*nix Walkthrough

Shell Overview

https://github.com/datacarpentry/2015-05-30-HASTAC/blob/gh-pages/shell-intro/README.md
https://github.com/datacarpentry/2015-05-30-HASTAC/blob/gh-pages/shell-libcatalogue/report-data.md
https://github.com/ComputeCanada/2017-05-15-ualberta/blob/gh-pages/__CommandLineResources/CommandLineWalkThrough.md

We’re going to use it in this class, for all of the reasons above.
If you are going to work with GNU-Linux, the standard OS for scientific and high-performance computing,
then you’ll end up here sooner or later.

In this portion of the workshop we’re going to:

learn how to use BASH by using BASH
learn about why shells are the way they are
automate a repetitive process

Shell cheat sheets:
* http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/ * https://github.com/swcarpentry/boot-
camps/blob/master/shell/shell_cheatsheet.md

Explain shell - a web site where you can see what the different components of a shell command are doing. *
http://explainshell.com * http://www.commandlinefu.com

The shell is already available on Mac and Linux. For Windows, you’ll have to download a separate program.

Mac OSX is built on top of a version of BSD (Berkeley Software Distribution), a series of Unix variants. As a
consequence it has a shell built in that will do everything we need it to today. To access the shell either:

From the Finder go through the following folders: Applications -> Utilities -> Terminal.
Hold down the Command Key and press the Spacebar. In the Spotlight search window that appears start
typing “Terminal”.

Regardless of the method used you will likely find it useful to drag the Terminal application icon to your Dock for
easy access in the future.

While OSX has a terminal the full power is not available by default and so we’ll need to bring some of this in to
make the most of this workshop. To do this:

1. Open a terminal window.
2. Type xcode-select --install and then press Enter.

Information on the shell

How to access the shell

Mac

http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/
https://github.com/swcarpentry/boot-camps/blob/master/shell/shell_cheatsheet.md
http://explainshell.com/
http://www.commandlinefu.com/

3. From the pop-up window choose “Install”
4. Wait for the Command Line Tools package download to complete, it’ll be about 130MB and installs fairly

quickly depending on your connection speed.
5. You’re done. If you’d like to check this then you can type svn into the terminal and you should see

“Type ‘svn help’ for usage.” as a response rather than a “command not found” error.

Windows is its own operating system with its own development history and as a result it has something that
looks like BASH but that isn’t, the Command Prompt. So, we’ll need to install a program that emulates BASH
on Windows. They’re are more than a few options for this and we often recommend the home, portable edition
of MobaXterm (The portable edition installs everything in one folder, making it easy to find and easy to remove
if you decide you don’t like it. We recommend installing it on your desktop so it is easy to find). HOWEVER, for
this workshop Git for Windows is the better option because it saves some extra hoop jumping around installing
Git and we don’t need any of the fancy features that tools like MobaXterm provide.

To install Git for Windows go to the Git for Windows homepage and choose the download option. Follow the
install procedure, choosing the default options each time.

GNU-Linux, even versions with Graphical User Interfaces (GUIs), is built on/around a shell environment so you
will have one installed by default. There are many variants of GNU-Linux so describing how to get to the shell
is unlikely to be of much help. Fortunately, most GNU-Linux users usually come to the workshop knowing how
to access the shell on their system. If this is not the case then just let someone who is part of the workshop
know and they’ll help you out.

Note that it is possible that your shell isn’t BASH. In somecases this won’t matter and you can likely follow
along since most of the commands we will look at today will be interchangeable across shells. If this proves
challenging then you can likely switch to BASH by typing $ bash at the command prompt (we’ll explain this
next). If you are unsure what shell you have you can type $ echo $0 and you should see -bash as the
result if you are using BASH.

Open a BASH terminal window and you’ll see:

"some information about the user/system" $

Windows

GNU-Linux

Entering Commands & Navigation

http://download.mobatek.net/10220170312132617/MobaXterm_Portable_v10.2.zip
https://git-for-windows.github.io/
https://git-for-windows.github.io/

We’ll ignore the “some information about the user/system” and just abbreviate this to “$” in the command
examples shared here. Don’t type the “$” it’s there just to tell you to type what is after it. If you see content in
the text block that doesn’t have a prompt then it is either wraping over from the line above or output, context
will usually make this clear.

If you want to give yourself some extra space by removing the “some information about the user/system” for
the duration of this BASH session then type the command: PS1='$ ' into your shell, your window should
look like all the examples in this workshop. This isn’t necessary to follow along (in fact, your prompt may have
helpful information you want to know about). This is up to you!

Let’s get started. Type:

$ whoami

Then press the enter key. The response will be someusername (Hopefully yours!).

What is happening here when we type whoami ? A process along the lines of the following takes place:

1. the computer looks for a program called whoami in what is known as the PATH, a set of directories it
expects to find programs in.

2. it runs that program
3. it displays that program’s output, then
4. it displays a new prompt to tell us that it’s ready for more commands.

Let’s find out where we are:

$ whereami

While it might seem like this would tell you where you are (within the directory structure of the system, not in
the galaxy) it will fail with something like whereami: command not found (UNIX) or
INFO: Could not find files for the given pattern(s). (GitBash).

So, the command we actually need is:

$ pwd

This stands for “Print Working Directory” and you’ll get something that looks like /Users/someusername. But
why doesn’t $ whereami work? Enter slides #1 and #2

SLIDE 1, 2, & 3: Two things / Cathedral vs Bazaar / Linux Flavours

Take a moment here to share a brief history of GNU-Linux. Core points:

1. Things to keep in mind
2. How GNU-Linux Started (Richard Stallman)
3. How it developed (Eric S. Raymond)
4. Where it is now (Linux Flavours)

Let’s look around inside the current directory.

$ ls

We’ll see a list of files inside this directory. Let’s call this the “list directory structure” command.

We can also look around from where we are. It is really likely that when you ran ls that it told you that there
was a folder called “Desktop” in your current directory. Let’s see what is inside there:

$ ls Desktop

What you see when you run this command should be exactly what is on your Desktop. To confirm this you are
encouraged to use your Graphical User Interface to change your desktop contents and then run the command
again.

Rather than just look at the Desktop folder let us make it the active directory:

$ cd Desktop

cd is the change directory command and it allows us to change what our active directory is within the shell.
To see what this means run the ls command again and note how the result is now the same as when
ls Desktop was run when your home directory was the active one.

We are going to create a directory to hold the files that we will be working with. We are going to do this in the
Desktop directory because it will be very easy to see the consequences of what you do here.

$ mkdir Data Carpentry

Have them minimize their window and go and look at their desktop to see the new folder. Have them
actually open the folder with their GUI so that they can watch what happens and have multiple ways of
interacting with the files. This last part is important since there is more than one way to get things done.

Basics of Looking, Moving, and Creating

Point out that they can swap between windows with CMD-TAB (MAC) / ALT-TAB (WINDOWS / LINUX).

Double check that the folder is ther by using ls too. Wait… Folders!?! What happened?

The ls command will show that we have made a mistake: there are two directories—one called “Data” and
another called “Carpentry”—rather than one “Data Carpentry” directory. This highlights two important things for
the class to remember:

1. The computer does what you tell it, not necessarily what you wanted.
2. Spaces matter on the command line, they are punctuation.

We can fix the first by being patient and careful. We can fix the second by:

1. Not using spaces via:
1. Camel Case
2. Dashes
3. Underscores

2. Escaping the space by preceding it with a “”.
3. Wrapping content with spaces in double quotes.

Let’s make the proper directory using underscores and move into that directory (We’ll come back to clean up
the extra folders later):

$ mkdir Data_Carpentry
$ cd Data_Carpentry

If scrolling through the history with the arrow keys has not come up yet then this is a good time to
prompt it.

Now we’ll get the data that we need for the rest of this portion of the workshop by issuing the following
command:

$ git clone https://github.com/ComputeCanada/DC-shell_automation

(For this to work you need both a tool called git installed and a working internet connection on the computer
you are using. If it fails just let someone helping with the workshop know and we’ll get you helped out.)

Git is a tool designed for managing software development by providing version control. One of the nice
bonuses tha comes along with using it is that you are able to make copies of other people’s work as long as
they have been shared within an online space for this purpose (these spaces are usually known as
“repositories”). Git is covered in Software Carpentry so this is all we’re going to do with it today.

If successful the git clone command will have made new directory on your desktop called “DC-
shell_automation”. Let’s move into it:

$cd DC-shell_automation

If tab completion has not come up by now then this is the time to introduce it.

Once you are inside this directory have a look around:

$ ls

Once you’ve seen what’s here try the following variants of the ls command to see what happens:

$ ls -a

$ ls -l

$ ls -F

These new options are called “flags” and adding them to the command turns on (or sometimes off) various
features. -a is the “show all” flag and it will show all files in the directory. -l is the “long format” flag and it
will give more information about each file. -F is the “disambiguate folders” flag and will put a / after
folders and a * after exectuables.

There are often a lot of flags available for each command. To see what they are for each command you have
two options:

1. Use the “man” pages if they are available.

$ man ls

2. Search on the Internet. This will be the case for those using MobaXterm (sorry these are not installed by
default and installing them is beyond the scope of this workshop).

Question: What will $ ls -al do?

Answer: List all the files in a long format.

Look at the output and point out the files ./ and ../. Point out that the single dot is a self reference to this
directory and that the double dot is a reference to the directory above this one.

Beyond the Basics of Looking, Moving, Creating, and now Destroying

Question: What does ls .. do?

Answer: Show the contents of the directory above the current one.

At this point they are ready to recognize the basic command structure:

command *space* **flags** *space* **list of files separated by spaces**

Have them look in the root directory with:

$ ls /

Comprehension Test: What do the flags -s, -h, and -r do when combined with the ls command?

Answer: They can look these up using man ls or just try them out.

Remember man -k search_word for finding man commands. You may need to be creative with the
terms you use.

The change directory command cd can be substituted for the list directory structure ls command with
everything you have learned so far.

Challenge: Go to the root directory

Solution: $ cd /

After this challenge a bigger problem faces the students: how to get back the where they were. The long way
would be to figure out the the directory structure with tab completion. Better would be to “just know” the
directory structure but this takes a long time. Fortunately there is the shortcut:

$ cd ~

The “~” is the “tilde” character and it is usually found with the “backtick” character under the ESC key. It can be
accessed by holding SHIFT and pressing “`”.

Actually, there is even a shortcut for the shortcut! cd is the equivalent of cd ~ .

Slide 3: Discovering Flag Properties

Moving Around

Comprehension Test: For a hypothetical filesystem location of /home/amanda/data/, select each of the
below commands that Amanda could use to navigate to her home directory, which is /home/amanda

1. cd .
2. cd /
3. cd /home/amanda
4. cd ../..
5. cd ~
6. cd home
7. cd ~/data/..
8. cd
9. cd ..

Answer: 3, 5, 8, 9

QUESTION: If someone is in /Users/nelle/ then how do they get to /Users/larry/ using cd and a relative
address?

ANSWER: cd ../larry

EXERCISE: A treasure hunt. Find the file named “youfoundit.txt” located somewhere within the hidden
folder in the content that we pulled down from GitHub using the GitClone command

Consider the following data as an example of a spreadsheet that a librarian may find themself working with.

Slide 4: Going Home

Slide 5: Translation 1

Working with Data

Our task is to figure out the top ten titles for 2016 at a given library branch in Edmonton. We could do this with
a spreadsheet program but only if we only had to do it a few times. After a point being able to write a script to
automate a process becomes really valuable.

We could also use a programming language to do this but we’re going to wait until tomorrow to see what we
can do there. Besides, there are things that can be done on the command line much faster than the
alternatives once the commands are known. The point here is not an expectation that you’ll be a shell scripting
expert after this but rather that you’ll have a strong sense about what is possible.

We’ll start by moving into the LibraryData folder and having a look at the content of the files.

$ cd LibraryData
$ ls
EPLABB.csv EPLIDY.csv EPLMLW.csv
EPLCAL.csv EPLJPL.csv EPLMNA.csv
EPLCLV.csv EPLLCP.csv EPLRIV.csv
EPLCPL.csv EPLLHL.csv EPLSPW.csv
EPLCSD.csv EPLLON.csv EPLSTR.csv
EPLGMU.csv EPLMCN.csv EPLWHP.csv
EPLHIG.csv EPLMEA.csv EPLWMC.csv

Viewing files

Each of these files is a listing of the top ten books with the highest number of holds at Edmonton Public Library,
each week from 9 AM Monday to 9 AM Monday, organized by customer home library branch. These are
comma separated value files.

We can look into them individually by using the concatenate command on the first CSV file:

$ cat EPLABB.csv
Row ID,Branch ID,Branch Name,Number of Holds,Title,Author,As of Date,Web URL
EPLABB20150316Fifty shades of Grey / E.L. James,EPLABB,Abbottsfield - Penny McKee Bra
nch,5,Fifty shades of Grey / E.L. James,James E L,03/16/2015 12:00:00 AM,http://epl.b
ibliocommons.com/search?t=smart&q=fifty%20shades%20of
EPLABB20150316The back of the turtle : a novel / Thomas King,EPLABB,Abbottsfield - Pe
nny McKee Branch,6,The back of the turtle : a novel / Thomas King,King Thomas,03/16/2
015 12:00:00 AM,http://epl.bibliocommons.com/search?t=smart&q=the%20back%20of
...

cat is the command to concatenate files. Concatenation is a join operator. The command also prints out the
consequences of the concatenation to the screen. If you only give it one file then it just spits back that one file.
This is a great example of tools being very useful but not quite in the way that their name or historical purpose
might suggest.

Question: What will the -n flag do when run with cat?

Answer: Prints the line numbers for each line in each file.

Note that it appears that the -n flag does not funciton with MobaXterm.

chances are that this looks terrible on your screen, making it a real challenge to see what’s there. Instead of
cat we can use a special command just for looking at the top of files:

$ head -n 1 EPLABB.csv
Row ID,Branch ID,Branch Name,Number of Holds,Title,Author,As of Date,Web URL

head allows us to just look at the head of a file. The optional -n flag followed by a number tells it how
many lines to return. Increasing the flag value to 2 will give us both the header and the first line, allowing us to
see what we are working with without being overwhelmed.

$ head -n 2 EPLABB.csv
Branch ID,Branch Name,Number of Holds,Title,Author,As of Date,Web URL
EPLABB,Abbottsfield - Penny McKee Branch,5,Fifty shades of Grey / E.L. James,James E
L,03/16/2015 12:00:00 AM,http://epl.bibliocommons.com/search?t=smart&q=fifty%20shades
%20of

Our process from here is going to roughly be the following:

get rid of the header
extract the title from each line
count the number of times each appears
sort the resulting list

While we are about to go through the details on how to do this note that typically the details matter much less
than being able to imagine how a file might be processed in the first place. The details are just syntax. Here
goes!

We can cut the header by using the sister tool to the head command with a special input to the number flag:

$ tail -n +2 EPLABB.csv

Usually when tail is passed the -n flag it is given a number without the + and tail then counts
from the bottom of the file up the number of lines specified and returns those lines. We don’t know how many
lines from the bottom we are though. By adding the + we are telling tail to count from the top and to take
everything from that line on down.

So, we can now have the file print on the screen without the header row. The next step in our plan is to extract
the titles and to do this we’ll need to pass what is currently being printed on the screen to another tool and to
do this you will need to learn about the redirect character: | . This is known as the “pipe” character and it is
found with the \ character just above the enter key on most Western keyboards. With it we can pass the
input of one command to another rather than chaining it to a file.

Let’s start with an example. Suppose that you wanted to check that using + with tail was inclusive and
you wanted to avoid scrolling all the way to the top to check that the line just below the header was all that was
returned. You could do this by “piping” the tail command to the head command, as follows:

$ tail -n +1 EPLABB.csv | head -n 1
Branch ID,Branch Name,Number of Holds,Title,Author,As of Date,Web URL

What we need to do is take the output of our tail command and pipe it to the cut tool. Cut allows for
lines in files to be sliced at a specified delimiting character into fields and then for the specified fields to be
returned. We know that we have a comma separated values file and by looking at our header row we see that
the title is the fifth item so we can issue the following command:

$ tail -n +2 EPLABB.csv | cut -d , -f 4
Fifty shades of Grey / E.L. James
The back of the turtle : a novel / Thomas King
Minecraft annual / [edited by Jane Riordan ; written by Jane Riordan with 3 others]
...

That’s pretty neat. There is a problem though, some of the lines are not returning the title / author combo that
we expect, such as "Option B : facing adversity and
"The lose your belly diet : change your gut .

Question: What is happening here and why?

Answer: cut isn’t clever enough to know that it is dealing with a CSV file and so it treats commas as
commas no matter where they are. The lines that are returning EPLABB actually have commas in the title
of the book and this shifts the field that is returned on those lines.

This is potentially a serious problem for us because we cannot count on a particular number of commas. This is
also good reason not to choose a delimiter that appears elsewhere in the file. There are two fairly straight
forward ways around this:

1. Use csvtool to recognize what commas are delimiters and which are part of the content of a field
(csvtool recognizes that commas inside of quotation marks are not delimiters).

2. Use the setup of the file and the features of cut to our advantage.

While #1 would be nice we can’t really pursue it here because of all the MacOS users in the room. Why is this
a problem? As mentioned earlier, MacOS is based on a variant of BSD, a variant that is locked down such that
it is not at all straightforward to install new GNU-Linux tools on the system. Since we’re going for cross-platform
as much as possible we’re going to need to find another way.

Question: Where else does the title appear and how might we use cut to get it? (Hint: we might need
to use cut 2x…)

Answer We can use cut to get us everything from the fourth field on and then use it again to cut at the
/ if we are willing to lose the author.

Let’s do this:

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1
Fifty shades of Grey
The back of the turtle : a novel
Minecraft annual
...
"The lose your belly diet : change your gut, change your life
...
"Option B : facing adversity, building resilience, and finding joy

So, we’re moving along, we just really need to get rid of quotations before some of the titles. To do this we
need to pass our current output to another tool, one that is able to read lines and make replacements/removals
of text based on patterns. The tool that can do this is sed , the Stream EDitor.

For our purposes sed has a special format that looks like this:

sed 's/what_to_find/what_to_replace_with/'

What we want to do is remove the " content completely so we can just leave the second item empty by
removing it completely:

sed 's/what_to_find//'

This leaves us with the problem of what to find. Here sed is expecting a regular expression, which is a way
of declaring patterns of text. Let’s start with a simple one “EPLABB” and add sed to our pipeline:

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//'

We now have all the titles. Nice.

Our next task is to count them. To do this we must first sort them. It should be little surprise that sort is a
command that we can easily add to our pipeline:

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//' | sort

We’ll now lean on a command called uniq (short for “unique”) to remove all the duplicate entries. More than
this though we’ll pass it the -c flag so that it will count the number of entries.

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//' | sort | uniq
-c

One last sort, this one with the -r flag to reverse the results so the larger number is at the top, and we’re

done.

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//' | sort | uniq
-c | sort -r

Of course, if you’d like to specify how many lines to print then you can pipe the result to head with the -n

flag on.

$ tail -n +2 EPLABB.csv | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//' | sort | uniq
-c | sort -r | head -n 10

So, we’ve built a pipeline for EPLABB but what about the other branches? How can we see the top 10 most
popular books in each of those branches? We could just press the up arrow, scroll to the left, and change the
name but there ought to be a better way. Actually, there is and we’re going to do it now. We’re going to turn our
pipeline into a script.

We are now going to make a file. It is important for the participants to note that what matters here is that they
can create a text file not what tool they use to make that text file.

There are many options for text editors. We’ll use one called vim because it is available on all different
platforms that people might bring to a Carpentry workshop. It is a powerful editor because of all the options
available. We’ll only look at a few options. Keep the following in mind when using vim :

vim has two modes: INSERT and COMMAND. Insert is used for writing and editing text. Command is
used for moving around, searching, saving, etc. You will start in the command mode. You can enter the
insert mode by pressing : followed by an i (often writen at :i). You can get back into command
mode by pressing ESC .
Files can be saved from command mode with :x . If the file has not yet been named or you would like to
change the name then add a space and the name you would like to give the file. For example
:x myNewFile.txt .

Before we move on copy our current pipeline to your clipboard to save you typing it out from memory.

We will run nano by issuing the command followed by the name of the file we would like to create/edit.

$ vim top10.sh

Automating

Creating Files

Check that the file is in the folder:

$ ls

To view the content of the file we could run nano again or just use cat . When you are satisfied that it is
there you can run this script by issuing the bash command and following it with your file name

$ bash top10.sh

The point with making this script though was to have it work for any of the EPL branch files. Now that we hawe
it working for the first one let’s generalize it. Open it back up:

$ vim top10.sh

Once inside change the pipeline to the following:

tail -n +2 "$1" | cut -d , -f 4- | cut -d / -f 1 | sed 's/"//' | sort | uniq -c | sor
t -r | head -n 10

When this script is run the "$1" tells the shell to grab the first item following the name of the script on the
command line and substitute that value for the "$1" . Once you save and exit nana you can now repeat what
we’ve already done via:

$ bash top10.sh EPLABB.csv

And substitue any of the other branch CSVs as well.

Optional: Add #!\bin\bash to the top of the file, use chmod +x top10.sh to make the file
executable, and explain the ./ syntax to run this as a “full” script.

To Be Added: Using cat and * to pull together all the EPL branch files into one big file for future
processing.

Before we leave the command line behind we should know how to do some quick clean-up. Specifically, we
have some junk folders that we made “by accident”, some files that it would be nice put together in a “trash”
folder, and some files that would benefit from a “.txt” extension.

Cleaning Up

ACHTUNG: We are now at the point where you will learn commands that can seriously damage your
system. Be very sure that you understand what you are doing before you do it.

Let’s start by getting rid of the folders on the Desktop that we don’t need. Let’s see what is here:

$ ls ..

Which should show us something like:

...
Code
Command
Line
Command_Line
...

We want to remove the three accidental folders. We can do this using the rm command, which removes files
from the system. Let’s start by testing this with a new junk file:

$ touch junkFile

touch is the command used to change the modification and access times associated with a file. Like cat

it is overloaded. In this case the overloading creates a file with no content if the file does not already exist and
no other parameters are given. Use cat to look inside and ls -l to confirm that this is the case.

Once you have confirmed that the file is there let’s remove it and then check that it is gone:

$ rm junkFile
$ ls

Let’s try and remove Line/ (We’ll save Command and Code for a little trick):

$ rm Line

Running this command gives us a warning though and will not complete. We are told that these are directories.
Directories are just files at their core but they are special files that hold/point to other files and so we cannot
simply delete them without deleting their contents.

Question: How do we see what files are in these directories that we cannot delete?

Answer: ls -a

There is no recycle bin on the command line. Once you “rm” something it is truly gone (except for the
possibility of some very advanced forensics).

What is holding us back are the . and .. files. If you try to delete them you will be told:
"." and ".." may not be removed (Think about sitting at the end of a tree branch and cutting it off).

What we need is a special flag to use with the rm command. That flag is -r which is the “recursive” flag,
telling the command to enter a directory and remove everything inside it, all the way to the bottom. Let’s try it

$ rm -r Line
$ ls

And it is gone.

Note that like cat we can pass multiple files at the same time to rm and it will delete each one. If you
have a lot of files to delete the this can still be tedious. Fortunately there is a wild card character. Let’s test it
with some junk files:

$ touch junk1 junk2 junk3
$ ls
$ rm junk*
$ ls

Nice. Now let’s remove Command/ and Code/ :

$ rm Co*

Question: Without running this command, what would happen if the command issued was
$ rm -rf / ?

Answer: Everything goes since you are telling the computer to recursively remove everything in the root
folder. For some “real-world” consequences see this unfortunate forum post. It is possible that you will
have some permission or other security mechanisms in place to prevent this but if you are a full
administrator it can be done.

Often you will be prevented from doing dangerous things—like deleting crucially important files—because
you are just a regular user and not logged in as the super user. It is possible to become the super user on

Only think about the next question. Do not figure it out by running it.

Slide7: A serious mistake

Slide 8: Make me a sandwich

http://serverfault.com/questions/587102/monday-morning-mistake-sudo-rm-rf-no-preserve-root

most systems by entering the command sudo in front of any other command. For those working as
system administrators on UNIX-like systems a common workflow is the following:

$ tell the computer to do X
computer says "No, you don't have permission"
$ sudo tell the computer to do X
the computer does it (after the right password is entered)

You can try sudo with any command to see how it works. Let’s try it with ls

$ sudo ls
Password:
<list of directory contents>

XKCD has a nice little web comic to bring home how sudo is used.

On any Debian based system (Ubuntu), try “apt-get moo”. If you have aptitude installed try, in sequence:

aptitude moo
aptitude -v moo
aptitude -vv moo
aptitude -vvv moo
aptitude -vvvv moo

play NetHack on line at https://alt.org/nethack/

The command rev which is part of the util-linux package reverses any text you feed to it:

fortune | rev
.retteb hcum ,hcum ylno ... won thgir era uoy erehw ekil yltcaxe si esidaraPnosrednA
eiruaL --

Install links or lynx to browse the web

Visit:

ssh sshtron.zachlatta.com

Then compete! Use WASD or HJKL (vim) to move the specific direction.

Some Fun

https://xkcd.com/149/
file:///Users/simpson/Documents/workspace/Carpentry/DC-shell_automation/README.md

telnet towel.blinkenlights.nl

How to get your terminal to have fancy colours and other formatting when looking at files and how to remove
this should you want to not have people get all worked up because their screen doesn’t look like yours and you
don’t want to go down that path because it is really a rabbit hole for another time… =)

Before we move to looking at version control and a programming language you’ll likely find it useful to save a
list of all the commands that you have used so far. You can do this by navigating to a directory where you
would like to save them and then running the history command with a redirect to a file.

$ history > history_file.txt

Two other things to note about the history command:

1. it can be combined with grep to find commands you have forgotten.

$ history | grep cat

2. it is the history file that you are scrolling through when you press the up arrow on the commandline to
avoid typing the same commands over and over.

1. We use the term “GNU-Linux” her rather than the more common “Linux” to pay respect to its full history
rather than just one event. When Richard Stallman started the GNU (GNU’s Not Unix) project he was able
to assemble a wide range of important and useable tools, he just wasn’t able to get a kernel, roughly the
program that handles all the inputs and outputs from the hardware associated with a computer. That
kernel was eventually provided by Linus Torvalds. Both the tools and the kernel are essential to the project
and the name “GNU-Linux” appropriately acknowledges this. ↩

2. The shell’s name is an acronym for Bourne-again shell, punning on the name of the Bourne shell that it
replaces[11] and on the term “born again” that denotes spiritual rebirth in contemporary American
Christianity Wikipedia. This is programmer humour. ↩

One last thing to add

One last thing to remember

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

